
Copyright is held by the author / owner(s). 
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 
ISBN 978-1-4503-0210-4/10/0007 

GPU Fluids in Production: Accelerating the Pressure Projection

Dan Bailey∗

Double Negative
Ian Masters†

Double Negative

From left to right: Smoke simulations from 2012 c© 2009 Columbia Pictures Industries, Inc., Liquid simulation using CUDA-based linear
solver - GPU blocks shown in yellow containing 256 cells each, FLIP particles previewed as points, meshed and rendered fluid surface

Abstract

Effects such as billowing smoke, raging fire or turbulent water have
been increasingly represented in recent movies. While fluid simu-
lation techniques have benefited from research advances, they re-
main computationally expensive. We introduced GPU acceleration
to our proprietary fluid solver, Squirt1 as the first step towards solv-
ing complex production scenes in reasonable simulation time.

1 Introduction

The pressure projection is typically the bottleneck in a fluid sim-
ulation as it requires a slow, iterative process to enforce the in-
compressibility condition of the Navier Stokes equations. Our lin-
ear solver uses the preconditioned conjugate gradient method to
achieve this. However, choosing an effective preconditioner which
also performs well in parallel is notoriously hard.

To address this, we developed a strategy for parallel precondition-
ing specifically designed for use in fluid simulations. By avoiding
generic sparse matrix representations and exploiting the strengths
of current NVidia GPU architecture, we deployed a CUDA-based
linear solver for use in production that exhibits significant increases
in speed over the best available alternatives on the CPU.

2 Our Approach

Our preconditioning uses a variation of the outer-product form
of the AINV preconditioner [Benzi & Tuma], to construct A-
conjugate sets of vectors from the standard basis. Our major contri-
bution is to rely on consistent offsets to access data within padded
3D grids on the GPU instead of depending on a drop tolerance to
denote the sparsity in a generic 2D sparse matrix representation.

In addition, we developed a block-dropping strategy which drops
any blocks not containing fluid. Aside from memory allocation,
the time for performing the linear solve therefore becomes purely
dependent on the region of simulated fluid rather than on the size of
the fluid domain.

In memory, the fluid cells are arranged in contiguous blocks of cells,
their size matching the number of threads to be used per block on
the GPU with the grid resolution padded to meet the edges of the
blocks. As most of the calculations for a cell involve using values

∗e-mail: drb@dneg.com
†e-mail: iim@dneg.com
1originally co-authored by Marcus Nordenstam and Robert Bridson

from neighbouring cells, the whole block can be pulled into shared
memory at once using coalesced reads. This reduces the overhead
of global memory accesses. Note that the indices of the cell blocks
that contain fluid are stored in a cache at the start of the solve.

The AINV algorithm builds a factorised approximate inverse:

M = ZD−1ZT ≈ A−1 (1)

A being the matrix to invert, M its approximate inverse, Z an upper
triangular matrix and D a diagonal matrix containing the pivots.

During the A-orthogonalization process, there is a direct trade-off
between reducing memory and forming M such that it is closer to
the inverse of A. While a traditional approach is to drop elements
below a defined threshold to enforce sparsity, we propose to calcu-
late the pivots and six off-diagonal values (i, j, k, ij, ik, jk), regard-
less of whether they exceed this threshold, storing them in separate
3D grids. These values are then accessed directly on the GPU when
applying the preconditioner using offsets that have been calculated
from the domain size. While the resulting preconditioner is slightly
less effective than when using a threshold that would produce sim-
ilar sparsity, the cost of calculating a few extra iterations is vastly
outweighed by being able to take advantage of faster GPU memory
regions.

Dense Smoke Res Its P-time Its-time T-time
CPU PCG(MIC) 1003 48 0.328 2.51 2.84
GPU PCG(AINV) 1003 186 0.350 0.803 1.15
CPU PCG(MIC) 2003 92 1.25 39.9 41.2
GPU PCG(AINV) 2003 369 3.62 11.5 15.1
Sparse Liquid Res Its P-time Its-time T-time
CPU PCG(MIC) 1003 16 0.194 0.635 0.635
GPU PCG(AINV) 1003 49 0.139 0.0432 0.182
CPU PCG(MIC) 2003 27 0.327 8.16 8.16
GPU PCG(AINV) 2003 98 0.200 0.441 0.641

Comparison of our GPU linear solver with a threaded CPU solver
preconditioned with Modified Incomplete Cholesky, showing the
formation time (P-time), iteration time (Its-time) and total time (T-
time) for dense smoke and sparse liquid simulations.

References

M.BENZI, J., AND TUMA, M. 2000. Robust approximate inverse
preconditioning for the conjugate gradient method. J. Sci. Com-
put. 22, 4, 1318–1332.


